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Abstract

Forecasting sea ice concentration on seasonal
timescales is important for both climate science and
polar operations, but machine learning methods are limited
by the small size of the observational record. To address
this, we train U-Net models on a large ensemble of climate
model simulations (CESM-LE) to evaluate the effects of
physical inputs, dataset size, and simulation-based pre-
training. We find that including atmospheric and oceanic
variables—especially sea level pressure—marginally
improves skill in predicting summer sea ice, though not
in ways easily linked to known climate modes. Increasing
training data volume improves performance in difficult
regimes, but yields diminishing returns. Pretraining on
CESM-LE followed by finetuning on observational data
improves winter predictions but degrades performance in
summer, suggesting persistent biases inherited from the
simulation. These results caution against naı̈ve use of
simulation data for pretraining and highlight the need for
more robust transfer strategies.

1. Introduction

Sea ice is a seasonally-varying layer of ice that is ubiq-
uitous in Earth’s polar oceans. Understanding the dynam-
ics and evolution of sea ice is important to understanding
the broader polar climate, because it mediates transfers of
heat, moisture, and momentum between the atmosphere and
ocean. Additionally, sea ice is important for human activ-
ities in polar regions such as shipping, scientific research,
fishing, and tourism.

Forecasting the spatial extent of sea ice with seasonal
(i.e., 3 to 6 months) lead times has been a problem of both
scientific and operational interest [2, 9]. Similar to weather
forecasting, this can be viewed as an initial value problem
that can be solved by constraining some initial state estima-
tion via data assimilation, then stepping forward that state
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Figure 1. Antarctic sea ice in September (maximum extent month)
and February (minimum extent month).

according to some dynamics. Traditionally, this is done by
solving the equations of fluid flow and thermodynamics on
a discrete grid (exactly analogous to numerical weather pre-
diction) [10, 3].

In recent years, numerous groups have shown that it is
viable to train neural networks to forecast maps of sea ice
concentration of comparable or even better skill than tradi-
tional physics-based forecasting methods [1, 16, 12, 19, 18].
The reasons for this are twofold: 1) operational prediction
of sea ice, like weather, uses data assimilation to constrain
initial conditions. However, our ability to do data assimila-
tion is constrained by limited continuous observation in po-
lar regions and in the subsurface ocean; 2) sea ice involves
multiscale physics that must be represented heuristically in
physical models.

However, these machine learning methods are often
trained to predict maps of sea ice concentration obtained
from the observational satellite record (1978 to present),
which when sampled at monthly frequency amounts to
O(500) data points. The limited size of the dataset presents
several challenges. First, it is possible that models capable
of emulating the complex dynamics of this system are data-
constrained, do not generalize well to extremes, or are prone
to overfitting. Additionally, conducting ablation or scaling
tests to systematically assess model performance is difficult
on small test sets restricted to the observational dataset.
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To address these challenges, we relax the constraint of
using purely observational data, instead opting to use an en-
semble of simulations derived from a physics-based climate
model. The motivation is therefore not to build the best-
performing sea ice forecasting model that can emulate sea
ice in the real world, but rather to probe the design space,
capabilities, and limitations of ML-driven methods for sea
ice forecasting in a data-rich setting. Additionally, using
simulation data gives the opportunity to study whether or
not it is beneficial to pretrain models on simulation data in
order to better emulate real-world sea ice dynamics.

2. Related work
Andersson et al. [1] developed IceNet, a U-Net model

that skillfully predicts the next six months of spatial cover-
age of Arctic sea ice given a diverse set of physical inputs,
such as sea ice concentration, sea level pressure, sea surface
temperature, etc., at various lags. Notably, they showed that
their model was, on average, more skillful than a state-of-
the-art physics based model, SEAS5.

Yang et al. [18] follow the framework in [1] to predict
Antarctic sea ice on seasonal timescales. They find quali-
tatively similar results. In particular, in both [1] and [18],
an input-permutation ablation test (i.e., where inputs of
the same physical type are shuffled in the time dimension)
showed that most physical inputs, even when permuted, did
not significantly harm model performance. This suggests
that many of the inputs are perhaps not necessary for recov-
ering model performance. More recently, various groups
have augmented the vanilla convolutional U-Net with spa-
tiotemporal attention [13, 16] and neural ODEs [12], finding
slight performance improvements.

Uebbing et al. [15] perform a feature ablation analysis on
the original IceNet model [1] and find that the performance
of models trained only on past sea ice concentration are
within the epistemic uncertainty bounds of the performance
of the the original model.

In the present work, we analyze the performance of con-
volutional models trained to forecast Antarctic sea ice up to
six month lead times, similar to the setup in [1] and [18].
However, unlike previous studies which are trained on the
observed sea ice, we train our models to predict simulated
sea ice dynamics (CESM Large Ensemble, or CESM-LE).
CESM-LE serves as a data-rich environment within which
we can perform a more robust set of ablation and scaling
experiments. Furthermore, we follow [1] in evaluating the
performance of models pretrained on simulation data on the
task of forecasting true (observed) sea ice. While [1] found
a marginal improvement in pretrained models for forecast-
ing Arctic sea ice, pretrained models have to our knowl-
edge not yet been evaluated for forecasting Antarctic sea
ice, which is typically represented more poorly by physical
climate models [9, 3].

3. Dataset and methods

3.1. CESM Large Ensemble

The Community Earth System Model Large Ensemble
(CESM-LE) is a set of climate simulations generated with
the CESM, a state-of-the-art Earth system model [7]. Each
ensemble member1 is subject to identical external radiative
forcings (e.g., historical greenhouse gas emissions) but ini-
tialized with roundoff error-level perturbations to the atmo-
spheric state. These perturbations grow chaotically, produc-
ing divergent yet equally plausible climate trajectories that
sample internal variability around the forced mean climate.
Importantly, there is no assimilation of observed data, so
these simulations, unlike reanalysis products, are not con-
strained to the particular realization of observed climate
variability. The ensemble spans over a century at relatively
high temporal (daily to monthly) and spatial (∼1°) resolu-
tion and includes a comprehensive set of physical variables
across atmosphere, ocean, land, and sea ice components.

Gridded data from CESM-LE are of the form X ∈
RT×K×N×W×H where T is the temporal dimension, K is
the physical variable dimension, N is the ensemble mem-
ber, and W and H are the spatial dimensions. For our pur-
poses, we regrid the data to a stereographic south polar pro-
jection (such that the South Pole is centered) with spatial
dimensions H × W = 80 × 80. This spatial resolution is
chosen such that it approximately retains the 1◦ resolution
of the native model output and may be evenly divided in two
for downsampling operations.

For each ensemble member, we normalize sea ice con-
centration by subtracting out the mean for each grid point
(no additional normalization is done because sea ice con-
centration is already within the range of 0 and 1). For other
inputs, we apply min-max normalization so that training
inputs are within the range [0, 1]. Finally, we remove the
forced climate trend by removing the quadratic least squares
fit from each grid point.

3.2. Observational data

Observational sea ice data (monthly averaged from 1979
through 2024) is obtained from NSIDC and other variables
are obtained from the ERA5 reanalysis. The former is de-
rived from passive microwave satellite measurements, while
the latter is a reanalysis product generated by data assimila-
tion from varied remote sensing and in-situ sources. These
gridded data are mapped to the same 80 × 80 polar grid as
the processed CESM-LE data.

1Due to overloading of this term, we will explicitly distinguish between
ensemble members in CESM (which correspond to distinct climate simu-
lations) and U-Net ensemble members (which correspond to different re-
alizations of our model trained with different random initializations and
minibatches).
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Name Configuration C

input1 Past 12 months of SIC, land mask,
sin and cos of month index

15

input2a input1 + past 6 months of SST 21
input2b input1 + past 6 months of SLP 21
input2c input1 + past 6 months of Z500 21
input3 input1 + past 6 months of SST, SLP,

and Z500

33

Table 1. Experiment 1 (inputs) configurations. SIC = sea ice con-
centration; SST = sea surface temperature; SLP = sea level pres-
sure; Z500 = geopotential height at 500 mb. C is the total number
of input channels.

3.3. Models

We use a relatively unmodified U-Net architecture, simi-
lar to what is used in [1] and [18]. The U-Net has a standard
encoder-bottleneck-decoder structure with three downsam-
pling and upsampling layers (see Supplementary Info A.1).
The model is trained to forecast maps of deviations from the
time-average sea ice concentration (in climate science this
is referred to as the “anomaly from climatology”). This is
motivated by the fact that by far the strongest signal in the
raw sea ice data is the seasonal cycle (see Figure 1), and
therefore the skillfulness of predictions is always assessed
relative to the background seasonal cycle.

Our model does not explicitly treat temporal dynamics
and takes inputs with shape RN×C×H×W , where C in-
cludes different physical inputs at different lag times and N
is the batch dimension. The output is of shape RN×6×H×W

since the model forecasts one map for each month, up to six
months. The reason for using a simple architecture is that:
1) U-Nets and their variants have been used in most preex-
isting studies in this field; 2) more advanced architectures
seem to provide only marginal gains in improvement; 3) the
U-Net we adopt is relatively lightweight (8M parameters)
and easy to train.

4. Experiments

4.1. Experiment 1: Physical inputs

We test the benefit of adding additional oceanic and at-
mospheric variables to the input channels. The input con-
figurations are described in Table 1. We use the same
training settings to ensure consistency among the config-
urations. The models are trained using Adam optimizer
with a learning rate of 0.001 and a batch size of 64. We
use an area-weighted MSE loss that also accounts for sea-
sonality in sea ice area (see Supplementary Info A.2). We
use an 8-ensemble member subset of CESM-LE for training
(n = 15648 samples), 2 ensemble members for validation,
and 4 ensemble members for testing. Models are trained

for 10 epochs (based on experimentation, further training
results in overfitting to the training dataset). To assess ro-
bustness to initialization, 5 models from unique weight ini-
tializations are trained to generate an ensemble of U-Nets.

The accuracy of model predictions is assessed by the
spatial anomaly correlation coefficient (ACC). Given a sin-
gle prediction map Ŷ ∈ RS where S = H × W is the
flattened spatial dimension and true label Y , the anomaly
correlation coefficient is defined as the Pearson correlation
in the spatial dimension:

ACC(Ŷ , Y ) =

∑S
i=1(Yi − Y )(Ŷi − Ŷ )√∑S

i=1(Yi − Y )2
∑S

i=1(Ŷi − Ŷ )2

= r(Ŷ , Y )

For this experiment, we calculate an ACC score for each
model prediction. We aggregate these statistics according
to the target month and lead time. We then conduct a sim-
ple bootstrap to assess statistical significance in differences
between ACC scores among different input configurations
(Supplementary Info B.1).

First, we discuss the characteristics of sea ice predictabil-
ity that are general across input configuration. Figure 2
shows that the input1 baseline, trained to predict future
sea ice only with past sea ice, is skillful at short lead time
across the year. This skill extends to longer lead times in
the winter due to persistence of anomalies through the ice
growth season. The model is generally unskillful for pre-
dicting fall and summer sea ice at long lead time, consistent
with the fact that the ice melt season is more strongly driven
by synoptic atmospheric processes (i.e., weather that is un-
predictable months in advance) and that oceanic memory is
cut off due to freshening of the upper mixed layer [8].

Adding sea surface temperature, sea level pressure, and
500 mb geopotential height (input3) generally improves
model skill relative to the model trained using only sea ice
as input (input1). The improvement is most pronounced
(order 10%) for predicting summer months (JFM) at long
lead time. This is promising, as predicting summertime
conditions through the melt season is the hardest time of
year to make skillful predictions [3, 6, 11]. When the three
inputs are added separately, it is revealed that the improve-
ment can be attributed primarily to addition of sea level
pressure.

In contrast, addition of sea surface temperature alone
(input2a) indeed harmed the model performance for pre-
dicting summertime conditions at 5 to 6 months lead time.
We surmise that this may be due to the tendency for under-
ice SST anomalies to be strongly out-of-distribution. The
typical range of SST under sea ice is constrained tightly to
the freezing point of seawater, so small e.g., O(0.01◦ C)
anomalies can be strongly amplified even under min-max
normalization (see Supplementary Info B.2 and Figure S2).
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Figure 2. Experiment 1 (inputs). Top left: average ACC for sea
ice-only configuration (input1) as a function of target month and
lead time (e.g., bottom left box corresponds to predicting January
sea ice at a lead time of 1 month, so inputs are provided up to the
previous December). Other plots: changes in ACC, expressed as
percent differences. Hatched boxes are not statistically significant
at the p = 0.05 level.

Next, we ask the question: are instances for which
input3 model outperforms the input1 model associated
with a physically consistent signal in the inputs?

To answer this question, we use PCA to extract the dom-
inant modes of variability in the additional physical inputs
(SST, SLP, and Z500) provided to input3. For each vari-
able, this yields the leading eigenvectors of the covariance
matrix; then, for each instance in time we compute the pro-
jection of the true data onto the leading eigenvectors to get
the principal component timeseries. We plot joint distribu-
tions of the leading components with the ensemble-mean
ACC difference between input3 and input1 configura-
tions. Since the greatest improvements in skill are for pre-
dicting January through March at 4-6 month lead time, we
select only instances where the model prediction starts in
September (thus reaching March at lead time 6). In Fig-
ure 3, we show results for the first principal component in
the sea level pressure, which is chosen due to the fact that
sea level pressure seemed to have the biggest role in im-
proving model predictions (see Figure 2). Furthermore, the
first principle component of sea level pressure corresponds
to the Southern Annular Mode (SAM), a mode of climate
variability known to have a driving effect on sea ice vari-
ability [4, 14] and accounts for 24.6% of the variance in the
sea level pressure data.

However, it is clear from Figure 3 that there is no rela-
tionship between the magnitude of SAM and improvements

Figure 3. Joint distributions of ACC and the absolute value of
the first principle component in sea level pressure for predic-
tions initialized in September. The first two rows show the U-Net
ensemble-mean ACC for each input configuration, while the bot-
tom row shows ACCinput3 −ACCinput1.

in the input3 model relative to the input1 model. We
surmise that the mechanisms leading to additional summer-
time predictability in the input3 model cannot be cap-
tured in this relatively simple regression onto the first prin-
ciple component. Further work towards this end may benefit
from saliency or attribution maps.

4.2. Experiment 2: Dataset scaling

Motivated by the small size of the observational sea ice
dataset, we conduct a data scaling experiment using CESM-
LE data to test the effect of training dataset size on gen-
eralization skill. Training datasets are prepared with 1, 4,
16, and 64 CESM ensemble members (one CESM ensem-
ble member corresponds to n = 1956 data points). For
simplicity, we adopt the input1 configuration from Ex-
periment 1, though we expect these results to generalize to
other input configurations as well. We then train the same
U-Net model architecture using the a common set of opti-
mization settings (identical to Experiment 1). Training is
continued until early stopping is triggered with a patience
of 5 epochs. We use the same held out 2 CESM ensemble
members for validation and 5 CESM ensemble members for
testing.

Figure 4 shows the average spatial ACC as a function
of lead time and target month for each of the dataset sizes.
First, we observe considerable improvements in ACC for
forecasting summer sea ice months at long lead time, es-
pecially when going from 1 to 4 and 4 to 16 CESM ensem-
ble members. However, these improvements diminish when
we further expand the training dataset to include 64 CESM
ensemble members. Another important feature is that tar-
gets associated with greater overall predictability—for ex-
ample one month lead time for the entire year and winter
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Figure 4. Experiment 2 (data scaling). Left subplots show the ACC
as a function of lead time and target month for each dataset size.
Right subplots show percent changes in ACC from one scaling
stage to the next.

months (JJA)—do not show significant improvement when
the dataset size is increased. This pattern is consistent
with the times during which temporal persistence of sea ice
anomalies is strong and therefore predictability is relatively
easy to learn. The nature of these results is perhaps ex-
pected, but it is clarifying to see that the trends in model

Figure 5. Loss curves for the data scaling experiment. Dashed
lines correspond to training loss and solid lines correspond to val-
idation loss.

improvement with dataset scaling indeed correspond with
underlying regimes of predictability (or lack thereof). Addi-
tionally, we note that the magnitude of improvements due to
data scaling alone is greater than improvements from adding
additional physical inputs with dataset size fixed (Figure 2).
Therefore, while not explicitly tested here, we speculate that
the results of this experiment would not be significantly dif-
ferent if another input configuration (i.e., additional physi-
cal inputs) is used.

Another perspective comes from inspecting the loss
curves for each of the runs (Figure 5), which clearly shows
that the model is more robust to overfitting when trained on
a larger dataset. This suggests that models trained on the ob-
servational sea ice dataset may be significantly constrained
by data sparsity, at least with respect to standard supervised
learning optimization techniques as used here.

4.3. Experiment 3: Does pretraining help?

We test the efficacy of pretraining on the CESM dataset
before finetuning to the observational dataset. The objec-
tive, like before, is to predict sea ice concentration anoma-
lies from the mean. Here we use the mean of the finetuning
(observational) dataset, so that sea ice inputs and targets are
defined by SIC′ = SIC − SICobs,train (SIC = sea ice con-
centration and {·} denotes temporal averaging). Note that
the possibility of distribution shift possibly complicates the
interpretation of this definition; we discuss this fact later.

We use initial weights from the model trained on the
largest CESM dataset (64 ensemble members) from Exper-
iment 2. We then finetune all model weights (encoder and
decoder) on years 1979–2011 and conduct an extensive hy-
perparameter sweep over a validation dataset of 2012–2015

Figure 6. Experiment 3 (finetuning). The top row shows ACC
scorecards for the baseline model trained only on observations.
The middle row shows the ACC difference for the zero-shot 64-
ensemble member model. The bottom row shows the ACC dif-
ference for the finetuned model. For each data split, the number
of years in that subset is denoted as (n = . . . ). Thus, each cell
represents an average over n samples.
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Figure 7. Experiment 3 (finetuning). Sample prediction from the finetuned and baseline models. Blue regions represent negative anomalies
while red regions represent positive anomalies. The ACC for each prediction is printed on the top right. This specific sample corresponds
to inputs up to January 2018 and predictions up to July (winter). As is exemplified here, the finetuned model typically has more confident
predictions near the ice edge for the ice growth season. By contrast, the predictions of the baseline model are more diffuse and smaller in
magnitude.

of the observational dataset. For each hyperparameter set-
ting, we train until overfitting using early stopping with a
patience of 5 epochs and consider the best validation loss.
Interestingly, we found that the models with the best vali-
dation loss achieved this loss within one or two epochs of
finetuning with a relatively large initial learning rate. On
the other hand, models finetuned using a smaller learning
rate, while more resistant to overfitting, did not general-
ize as well over the validation set. The results are com-
puted for the best model from the sweep over the testing
dataset which spans 2016–2024. More details of the train-
ing and hyperparameter sweep are provided in Supplemen-
tal Information C.1. We compare the finetuned model to
two baselines: 1) a model trained only on the observational
dataset (from here we will simply refer to this as the base-
line model); 2) zero-shot evaluation of the pretrained model
on observations.

While one might expect that the finetuned model exhibit
unequivocal improvement relative to the baseline due to the
small size of the observational dataset, Figure 6 shows that
this is indeed not the case. First, we note that the perfor-
mance of the baseline model on observational dataset is
considerably worse than even the model trained on a sin-
gle CESM ensemble member (Figure 4). This discrepancy
is particularly pronounced in wintertime sea ice prediction.
Next, we note that the finetuned model and the zero-shot
model both perform better over wintertime sea ice predic-
tion, but worse for summertime sea ice prediction. Interest-
ingly, this pattern is consistent across all lead times.

The similarity in performance between the finetuned and

zero-shot models indicates that the two models are not far in
parameter space. This is consistent with our earlier observa-
tion that in the hyperparameter sweep, the models with the
best validation loss tended to achieve it within one or two
epochs before starting to overfit. Furthermore, the “better in
winter, worse in winter” pattern is present even in the zero-
shot model evaluated on the training dataset, which suggests
that this is a bias that the model carries over from pretrain-
ing.

Inspecting the model predictions shows that the fine-
tuned model is often more confident, generating predictions
with larger magnitude anomalies and sharper edges than the
baseline model (Figure 7). This typically helps the fine-
tuned model in predicting the ice growth season through
fall and into winter, as anomalies are generally persistent,
pronounced, and localized near the ice edge. By contrast,
Figure S6 exemplifies the fact that both finetuned and base-
line models essentially exhibit no skill in predicting the melt
season through spring and summer.

Next, we ask: is the seasonal pattern in differences in
performance between models trained with CESM data and
purely observational data attributable to mean state biases
between CESM and observational sea ice?

To address this question, we recompute the normalized
observational data using mean statistics from CESM-LE;
that is, sea ice anomaly inputs and targets are redefined
as SIC′ = SIC − SICCESM,pretrain. This is akin to pre-
tending that observations is yet another ensemble member
from CESM. We then finetune the same model trained on
64 ensemble members of CESM to predict this new ob-
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jective. When evaluating the model, we convert the pre-
dicted anomalies back to anomalies relative to the observa-
tional dataset by adding the correction SICCESM,pretrain −
SICobs,train. The results from this experiment are shown in
Figure S5. We find that adjusting inputs and targets to ac-
count for the mean state bias in fact harms the finetuned
model performance compared to the standard normaliza-
tion where the observational mean is used. We posit the
following explanation. Shifting the mean will generally
result in more persistent anomalies, especially at the ice
edge, that correspond to the time-averaged difference be-
tween SICCESM,pretrain and SICobs,train rather than mean-
ingful anomalies from the mean. Therefore, the pretrained
model, which has learned to dampen persistent anomalies
over some decorrelation timescale, will encounter during
finetuning anomalies that are more persistent than what it
saw during pretraining.

Furthermore, we interpret this finding to indicate that the
pretrained model carries over not only mean state biases,
but more importantly biases in the dynamics of anomalies
from the mean. The exact characteristics of this bias are left
for future work. Overall, our findings in this experiment
suggest that pretraining on possibly biased simulation data
may yield adverse results, even if the models perform much
better within the pretraining dataset.

5. Discussion
Our analysis of ML-based sea ice forecasting models in

a relatively data rich setting has revealed the following new
insights:

1. Addition of additional atmospheric and oceanic input
variables leads to order 10% gains in improvement for
predicting summer sea ice. This is mostly attributable
to sea level pressure (SLP), but we find no relationship
between the dominant modes of SLP variability and
improvements in model skill. Addition of SST alone
can harm model performance.

2. Scaling the size of the training dataset in CESM-LE re-
sults in significant improvements in difficult-to-predict
regimes such as summer at long lead time, where
anomaly persistence is a poor baseline mechanism of
predictability. Conversely, essentially no additional
skill is extracted in regimes where persistence is the
dominant mode of predictability, such as one month
lead times across the whole year as well as winter
months at longer lead times. We find that models
trained on larger datasets are less prone to overfitting.

3. Finetuning a model pretrained on CESM data to pre-
dict observational data yields improvement relative to
a non-pretrained baseline for predicting April through
November, but worse performance for summer months

January through March. This pattern is present for
both zero-shot and finetuned models, suggesting that
biases learned from CESM persist through the finetun-
ing process. We find that redefining the sea ice objec-
tive to be relative to CESM means does not improve
finetuned model performance, suggesting that this bias
lies in the dynamic mechanisms of predictability and
not in differences mean sea ice.

Perhaps the most surprising and important result is that
the pretrained model does not improve upon the data-
limited baseline model in all target months. The cautionary
tale illustrated here is that the pretraining dataset may result
in learned biases that are not able to be corrected during
finetuning, even though added data richness significantly
improves performance within the pretraining dataset. A nat-
ural extension of the finetuning experiment is to analyze the
effectiveness of pretraining on other simulation datasets that
might better resemble real-world sea ice dynamics.

We will conclude with some reflections on the future
prospects of using machine learning for emulation or fore-
casting of sea ice. We focus in this study on the charac-
teristics of deterministic models trained to predict monthly-
averaged statistics. One shortcoming of this approach is that
we have made no serious attempt to quantify the inherent
uncertainty in subseasonal to seasonal climate dynamics.
While neural ensembling (which we perform in Exp. 1) is a
potential avenue for this uncertainty quantification, it is not
yet clear that the distribution over a neural ensemble should
resemble the expected distribution over uncertainty due to
sensitivity of the earth system to initial conditions. We be-
lieve that it will be valuable for future work to focus on the
calibration of e.g., probabilistic or (conditional) generative
models to the emulation of sea ice dynamics ([5, 17]).

Another shortcoming that we do not address here is
that our model predicts monthly-averaged quantities and is
therefore limited to learning dynamics of processes that oc-
cur with timescales longer than one month. This is a reason-
able baseline for sea ice forecasting on 6 month timescales,
since sea ice is a relatively slowly-evolving part of the earth
system. On the other hand, studies like [13] and [12] fo-
cus only on short-term sea ice forecasting limited to a lead
time of seven days. However, to predict across weekly
to subseasonal, seasonal, and annual timescales, we an-
ticipate that future ML models of the sea ice system will
jointly model sea ice, ocean, and atmospheric dynamics (as
is done in traditional physics-based earth system models),
in which case daily or subdaily timestepping will need to be
used. We foresee that effectively supervising the learning of
both short timescale and long timescale dynamics in such a
model will be a challenge.
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6. Contributions

Y.L. designed the experiments, wrote the code, trained
the neural networks, performed the evaluation, analyzed the
results, and wrote this paper. E.W. suggested the analysis
of correcting for mean state bias in Exp. 3. Both E.W.
and Z.K. (not enrolled in CS231N) provided mentorship
through meetings throughout this past academic year and
helped with project conceptualization.

This project is a continuation of an ongoing research
project (involving the three listed authors) that initially be-
gan in July 2024. The main results presented in all three ex-
periments were newly obtained during this academic quar-
ter. However, most of the codebase used to run these ex-
periments (except for Experiment 3) was developed prior to
this quarter. Moreover, we conducted some initial experi-
ments prior to this quarter that informed the particular ones
shown here.
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